Matematika

Pertanyaan

buktikan bahwa
cos x - cos (x-120) - cos (x-240) = 2 cos x

Tolong bantuin ya! makasii

2 Jawaban

  • cos x + cos(x-120) + cos(x2-40) = 0 
    cosx + cosx.cos120 – sinx.sin120 + cosx.cos240 + sinx.sin240 = 0 
    cosx + cosx(-cos60)– sinx.sin60 + cosx.(-cos60) + sinx.(-sin60) = 0 
    cosx + cosx(-cos60) + cosx.(-cos60) - sinx.sin60 + sinx.(-sin60) = 0 
    cosx(1 – cos60 – cos60) – sinx(sin60 – sin60) = 0 
    cosx(1 – (1/2) – (1/2)) – sinx(½√3 - ½√3) = 0 
    (0)*cosx – (0)*sinx = 0 
    0 = 0 itu buktinyah kak 


  • Materi : Trigonometri


    cos120
    = cos(180-60)
    = -cos60
    = -1/2
    cos240 = cos120

    sin240 = -sin120
    ---------------------------------------------------------------------------------------
    --------------------------------------------------------------------------------------------
    cos x - cos (x-120) - cos (x-240)
    = cosx - (cosx . cos120 + sinx . sin120) - (
    cosx . cos240 + sinx . sin240)
    = cosx - cosx . cos120 - sinx . sin120 - cosx . cos240 - sinx . sin240
    = cosx [1 - cos120 - cos240] - sinx [ sin120 + sin240]
    = cosx [1 + 1/2 + 1/2]
    = 2 cosx

Pertanyaan Lainnya